Analysis: Finland Goes Missile Shopping

0
1614
The launcher of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles / Credit: Maavoimat FB

By Robin Häggblom

In the shadow of the HX-fighter competition, the state of the ground based air defences in Finland has again appeared in the headlines. The short story is that in the mid-90’s Finland acquired the Russian Buk-M1 air defence system as part of Russia paying off the Soviet balance of the clearing accounts. However, while the system certainly is competent, questions soon arose if it was wise to operate a high-tech system which the main adversary had built? Especially as knowing the exact capabilities of the radar and missile is of crucial importance when it comes to defeating radar-guided missiles.

By the mid-00’s training new conscripts on the Buk stopped, and the system was phased out,  and replaced by the NASAMS II.

The NASAMS is a controversial system in Finnish service. Not because it is bad, it is very much amongst the most modern ones available, but because it is of significantly shorter range than the Buk it replaced. Most crucially it has a ceiling of around 10,000 meters, meaning that most modern fighter aircraft can simply operate above this. This isn’t necessarily as big a drawback as it is often portrayed to be. Operating above 10,000 meters place high demands on sensors and weapons if you are to hit anything, and it means that you are easily spotted by air surveillance radars, meaning that the advantage of surprise is long gone by the time the target is overflown.

Still, this has left Finland without a long-range surface-to-air missile for the first time since the late 70’s, and talk about the need for something heavier has been going since the decision to procure NASAMS instead of Aster. The big question is what?

An Iskander TEL raising one of its missiles into firing position / Credit: Vitaly Kuzmin/Wikimedia Commons

One issue which has been raised is the defence against ballistic missiles, i.e. missiles which are fired at a high angle, fly up to significant heights, and then ‘fall’ down at extreme speeds to hit a target. The Russian 9K270 Iskander-M is the embodiment of this threat, and comes equipped with either a conventional warhead or a nuclear one.

Finland’s Ballistic Missile Threat

To begin with, the ballistic missile threat is not new to Finland.

Even with the improved accuracy of the Iskander, it is not a war-winning weapon, as the limited number of missiles available and the rather limited damage caused by a single hit makes it impossible to take out dispersed targets.

Another issue often overlooked is how hard it is to shoot down a ballistic missile. Crucially, while a modern long-range air defence system can sport ranges of over 100 km against air targets (at high altitude, at lower altitude the earth’s curvature creates shadows), the corresponding ranges when trying to intercept a ballistic missile approaching at very high speed and steep angle are significantly shorter.

The implications of this is that a single battery might have a hard time defending both the Upinniemi naval base and central Helsinki, depending on the parameters of the intercept.

As such, it is no surprise that Finnish officers are focusing on dispersion and hardening strategic targets instead of acquiring anti-ballistic missile capabilities. This is in marked contrast to Sweden’s decision to acquire the Patriot.

Finnish Army ‘Wish List’

All things considered, any kind of anti-ballistic missile coverage is probably outside of the scope of the Finnish Army’s wishlist, with the focus being solely on the ability to shoot down aircraft at longer and higher ranges than what the current equipment is capable of.

However, even within these bounds, there are still a significant number of different options available on the market. With this in mind the Logistics Command has now issued a Request for Information to “around ten” companies. Interestingly enough, the interview with brigadier general Renko, deputy chief of the Logistics Command, says that he would like the new missile to be part of the current NASAMS systems. At the same time, he notes that this is not purely about introducing a new missile to old launchers, but that there needs to be more batteries out in the field to improve coverage.

The obvious choice which has figured in reporting is the AMRAAM-ER. Where the basic NASAMS uses the same AMRAAM missile as found on e.g. the Finnish F/A-18 Hornets, the AMRAAM-ER marries the basic AMRAAM seeker (with improved steering code) to the engine of the ESSM (Evolved Sea Sparrow surface-to-air missile), giving a significant increase in both range and ceiling (50 and 70% respectively according to Raytheon).

This means that both goals of the RFI could be met by buying more NASAMS batteries, and having both baseline and ER-versions of the AMRAAM in service. The big problem for the AIM-120 AMRAAM is that it is something of a victim of its own success. It is operated by a stunning 37 countries, meaning that no small amount of Russian research is likely going into how to defeat it. Especially if the AMRAAM will continue to be a key part of the Finnish airborne air defences as well, which is likely to be the case unless Rafale takes home the HX-competition, it might be good to ask whether all air defence eggs should be placed in the same basket?

A Patriot battery from the US Army deployed in Sweden during exercise Aurora 17, in August 2017 / Credit: Astrid Amtén Skage/Forsvarsmakten

At this point it should be remembered that one of the key points of the NASAMS is its modularity. It is unclear exactly which parts are integrated into the Finnish NASAMS systems, e.g if our ITO 05 (RBS 70 BOLIDE) are able to plug into the NASAMS’s Fire Distribution Center (FDC), something which Kongsberg claim is possible. However, if the Army really likes the current AN/MPQ-64F1 Improved Sentinel radar and associated systems, another missile could potentially be integrated into it. It is hard to see the reasoning behind this, and I am tempted to believe that the journalist misunderstood the general, who instead expressed a wish for the new system to be part of the current Finnish integrated air defences, i.e. sharing the same air picture as well as command and control structures.

If we assume this is what the Logistics Command means, it opens up a vast number of possibilities. One is the very same SAMP/T-system which competed (and lost) against the NASAMS ten years ago. The SAMP/T, also known as ASTER, is the closest competitor to the Patriot, and is also available both with “normal” and anti-ballistic missile missiles. As was the case last time around, both it and Patriot will probably be judged to be too expensive (although the Swedish deal is controversial at it turned out the SAMP/T offer was 150 million Euro cheaper than the Patriot one).

However, below the high-end Patriot and SAMP/T there are still plenty to choose from. MBDA, the company behind SAMP/T, offers the CAMM-ERand ASPIDE 2000, and while information is somewhat scarce, both are likely superior when it comes to range and height compared to the baseline AMRAAM. Saab has the SRSAM BAMSE, which offer an altitude coverage of 15,000 meters, and the benefit of operating on a different wavelength, Ka-band as opposed to X-band, than the NASAMS, making it harder to jam both at the same time. Israeli company Rafael offer the SPYDER-MR featuring their Derby-missile with a range of 50 km and a ceiling of 16,000 meters. A more exotic (and highly unlikely) option is the Japanese Type 11 missile system built by Toshiba, of which very limited information is available. Still, it does look like it could potentially fit the bill, and during the last years Japan has opened up for potential arms exports. South African Denel Systems has a number of different versions of the Umkhonto, the basic IR-version of which is currently in service with the Finnish Navy. Some of the more advanced concepts might be able to compete with the baseline AMRAAM, though it is doubtful if they will have enough reach to satisfy the demands of the current RFI. Still, Denel does offer a ground-based launcher, and is probably included amongst the companies receiving the RFI.

A French SAMP/T launcher being readied. Picture from Swedish exercise Aurora 17, autumn 2017 / Credit: Astrid Amtén Skage/Forsvarsmakten

The winner of the eventual RFQ which is to follow the current RFI is likely found amongst those mentioned above. The defence forces would like to sign a deal in 2020, and notes that this is tied to HX and Squadron 2020, as all three programs play significant roles in the overall air defence of Finland. If e.g. the CAMM in its sea-going version is adopted for SQ2020, it might increase the chances for CAMM-ER being adopted as the ground-based solution. In the meantime, it does feel like the AMRAAM-ER is the favourite, with the big question being whether relying too much on a single missile seeker for both air and ground-based is too high a risk compared to the synergies it would give?

And as it happens, Kongsberg and Patria recently announced they will open a Missile Competence Centre in Tampere, specifically mentioning their work NASAMS in the press release. Funny how these things come together sometimes.

Robin Häggblom is a writer and analyst from Finland who follows security and foreign policy issues. News Now Finland presents text from subject-area experts as solely the opinions of their authors. They do not necessarily represent the views or editorial policy of News Now Finland. This post has been edited for length. Read the original test here